A link prediction approach to cancer drug sensitivity prediction
نویسندگان
چکیده
منابع مشابه
A Noise-Filtering Approach for Cancer Drug Sensitivity Prediction
Accurately predicting drug responses to cancer is an important problem hindering oncologists’ efforts to find the most effective drugs to treat cancer, which is a core goal in precision medicine. The scientific community has focused on improving this prediction based on genomic, epigenomic, and proteomic datasets measured in human cancer cell lines. Real-world cancer cell lines contain noise, w...
متن کاملCorrigendum: Drug Response Prediction as a Link Prediction Problem
This Article contains a typographical error in the Results section under the subheading 'Method Comparison'. " In order to better understand the accuracy of our method, we compare it against the top performing approach in the DREAM Drug Sensitivity Prediction Challenge, Gonen and Margolin's kernelized Bayesian multitask learning (KBMTL) algorithm 19 ". should read: " In order to better understa...
متن کاملAn Axiomatic Approach to Link Prediction
Link prediction functions are important tools that are used to predict the evolution of a network, to locate hidden or surprising links, and to recommend new connections that should be formed. Multiple link prediction functions have been developed in the past. However, their evaluation has mostly been based on experimental work, which has shown that the quality of a link prediction function var...
متن کاملAlgorithms for Drug Sensitivity Prediction
Precision medicine entails the design of therapies that are matched for each individual patient. Thus, predictive modeling of drug responses for specific patients constitutes a significant challenge for personalized therapy. In this article, we consider a review of approaches that have been proposed to tackle the drug sensitivity prediction problem especially with respect to personalized cancer...
متن کاملGlobal proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
Motivation Proteomics profiling is increasingly being used for molecular stratification of cancer patients and cell-line panels. However, systematic assessment of the predictive power of large-scale proteomic technologies across various drug classes and cancer types is currently lacking. To that end, we carried out the first pan-cancer, multi-omics comparative analysis of the relative performan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Systems Biology
سال: 2017
ISSN: 1752-0509
DOI: 10.1186/s12918-017-0463-8